

Robot-Assisted Prostate Tumorectomy

Focal One

Product Presentation

- Rationale for Focal Therapy
- Pre-Treatment imaging
- Dynamic Focusing
- Treatment validation: Contrast-Enhanced Ultrasound
- Focal One[®] Device Concept

Rationale for Focal Therapy

Rationale for Focal Therapy

- Focal therapy represents the perfect balance between Active Surveillance and Over-treatment
- Focal Therapy is the future of prostate cancer therapies
- Focal therapy relies on accurate imaging to target the area to be treated
- Focal Therapy needs controlled energy to treat the designated area
- Focal therapy needs precise tools to evaluate the treated area

The 3 pillars of Focal Therapy

1. Localization

2. Ablation

3. Validation

Pre-treatment Imaging

1- MRI

- Import MRI images from CD/DVD/PACS (Dicom)
- Edit Contour of Prostate and Target areas
 - Load previously defined contour
 - Start contouring on Focal One®

2- Biopsy

Import biopsy volumes from CD/DVD/PACS

3- Real-time Ultrasound Volume

- Acquire Ultrasound Volume
- Edit Contour of Prostate

4- MRI / Biopsy / Ultrasound elastic fusion

- Automatic registration of 3D contours of prostate (3D translations and rotations)
- Elastic (non-rigid) transformation
- Transformation applied to MRI targets and biopsy trajectories to be visualized in the ultrasound

Treatment Area Planning

- Precise contouring of the area to be treated
- Visualization of MRI targets and 3D biopsy data
- Automatic dispatch of individual lesions

Focal One edap tms

Dynamic Focusing Technology

Focal One® Dynamic Focusing Probe

Dynamic focusing treatment

- 8 focal points from 32mm to 67mm ($\triangle f = 5 \text{ mm}$)
- Unitary HIFU lesion stacking
- Shooting process: 1s ON / focus; no OFF
- Unitary HIFU lesion height = 5mm
- Max Reachable depth (A-P Distance): 40 mm

- 16 isocentric rings = 16 ways
- Equal surfaces
- Electronic displacement of focal point
- Natural focal point @ 60 mm

Dynamic Focusing Advantages

- Access to Anterior Part of large prostates (A-P up to 40 mm)
- More **homogeneous** lesions
- Faster treatment (for the same volume)
- Conformational treatment

Treatment tracking

- Ability to pause at any time during the process
- Modify planning of slice being treated
- Ability to update the planning of upcoming slices
- Review the patient information (baseline, biopsy reports, etc.) without stopping the treatment
- Track the progress of the overall treatment with virtual
 3D prostate

Focal One

Treatment Validation

Contrast-Enhanced Ultrasound

Treated area validation

- Use of standard Contrast-Enhanced Ultrasound Technology (SonovueTM)
- Allows to confirm de-vascularized area
- Allows to re-treat areas not completely treated

Focal One Edap tms Bringing New Forizons to Therapy

Focal One® design concept

Patient Positioning: Standard OR table

Urologist positioning

Transport Position

Transport

Robot-Assisted Prostate Tumorectomy

